Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Khila, Abderrahman (Ed.)The evolution of sexual secondary characteristics necessitates regulatory factors that confer sexual identity to differentiating tissues and cells. InColias eurythemebutterflies, males exhibit two specialized wing scale types—ultraviolet-iridescent (UVI) and spatulate scales—which are absent in females and likely integral to male courtship behavior. This study investigates the regulatory mechanisms and single-nucleus transcriptomics underlying these two sexually dimorphic cell types during wing development. We show thatDoublesex(Dsx) expression is itself dimorphic and required to repress the UVI cell state in females, while unexpectedly, UVI activation in males is independent fromDsx. In the melanic marginal band,Dsxis required in each sex to enforce the presence of spatulate scales in males, and their absence in females. Single-nucleus RNAseq reveals that UVI and spatulate scale cell precursors each show distinctive gene expression profiles at 40% of pupal development, with marker genes that include regulators of transcription, cell signaling, cytoskeletal patterning, and chitin secretion. Both male-specific cell types share a low expression of theBric-a-brac(Bab) transcription factor, a key repressor of the UVI fate. Bab ChIP-seq profiling suggests that Bab binds thecis-regulatory regions of gene markers associated to UVI fate, including potential effector genes involved in the regulation of cytoskeletal processes and chitin secretion, and loci showing signatures of recent selective sweeps in a UVI-polymorphic population. These findings open new avenues for exploring wing patterning and scale development, shedding light on the mechanisms driving the specification of sex-specific cell states and the differentiation of specialized cell ultrastructures.more » « lessFree, publicly-accessible full text available June 18, 2026
- 
            Free, publicly-accessible full text available May 1, 2026
- 
            Long noncoding RNAs (lncRNAs) are transcribed elements increasingly recognized for their roles in regulating gene expression. Thus far, however, we have little understanding of how lncRNAs contribute to evolution and adaptation. Here, we show that a conserved lncRNA,ivory, is an important color patterning gene in the buckeye butterflyJunonia coenia.ivoryoverlaps withcortex, a locus linked to multiple cases of crypsis and mimicry in Lepidoptera. Along with a companion paper by Livraghi et al., we argue thativory, notcortex, is the color pattern gene of interest at this locus. InJ. coenia, a cluster ofcis-regulatory elements (CREs) in the first intron ofivoryare genetically associated with natural variation in seasonal color pattern plasticity, and targeted deletions of these CREs phenocopy seasonal phenotypes. Deletions of differentivoryCREs produce other distinct phenotypes as well, including loss of melanic eyespot rings, and positive and negative changes in overall wing pigmentation. We show that the color pattern transcription factors Spineless, Bric-a-brac, and Ftz-f1 bind to theivorypromoter during wing pattern development, suggesting that they directly regulateivory. This case study demonstrates howcis-regulation of a single noncoding RNA can exert diverse and nuanced effects on the evolution and development of color patterns, including modulating seasonally plastic color patterns.more » « less
- 
            Evolutionary variation in the wing pigmentation of butterflies and moths offers striking examples of adaptation by crypsis and mimicry. Thecortexlocus has been independently mapped as the locus controlling color polymorphisms in 15 lepidopteran species, suggesting that it acts as a genomic hotspot for the diversification of wing patterns, but functional validation through protein-coding knockouts has proven difficult to obtain. Our study unveils the role of a long noncoding RNA (lncRNA) which we nameivory, transcribed from thecortexlocus, in modulating color patterning in butterflies. Strikingly,ivoryexpression prefigures most melanic patterns during pupal development, suggesting an early developmental role in specifying scale identity. To test this, we generated CRISPR mosaic knock-outs in five nymphalid butterfly species and show thativorymutagenesis yields transformations of dark pigmented scales into white or light-colored scales. Genotyping ofVanessa carduigermline mutants associates these phenotypes to small on-target deletions at the conserved first exon ofivory. In contrast,cortexgermline mutant butterflies with confirmed null alleles lack any wing phenotype and exclude a color patterning role for this adjacent gene. Overall, these results show that a lncRNA gene acts as a master switch of color pattern specification and played key roles in the adaptive diversification of wing patterns in butterflies.more » « less
- 
            Hoxgene clusters encode transcription factors that drive regional specialization during animal development: for example the Hox factor Ubx is expressed in the insect metathoracic (T3) wing appendages and differentiates them from T2 mesothoracic identities.Hoxtranscriptional regulation requires silencing activities that prevent spurious activation and regulatory crosstalks in the wrong tissues, but this has seldom been studied in insects other thanDrosophila, which shows a derivedHoxdislocation into two genomic clusters that disjoinedAntennapedia(Antp) andUltrabithorax(Ubx). Here, we investigated howUbxis restricted to the hindwing in butterflies, amidst a contiguousHoxcluster. By analysing Hi-C and ATAC-seq data in the butterflyJunonia coenia, we show that a Topologically Associated Domain (TAD) maintains a hindwing-enriched profile of chromatin opening aroundUbx. This TAD is bordered by a Boundary Element (BE) that separates it from a region of joined wing activity around theAntplocus. CRISPR mutational perturbation of this BE releases ectopicUbxexpression in forewings, inducing homeotic clones with hindwing identities. Further mutational interrogation of two non-coding RNA encoding regions and one putativecis-regulatory module within theUbxTAD cause rare homeotic transformations in both directions, indicating the presence of both activating and repressing chromatin features. We also describe a series of spontaneous forewing homeotic phenotypes obtained inHeliconiusbutterflies, and discuss their possible mutational basis. By leveraging the extensive wing specialization found in butterflies, our initial exploration ofUbxregulation demonstrates the existence of silencing and insulating sequences that prevent its spurious expression in forewings.more » « less
- 
            Despite insertions and deletions being the most common structural variants (SVs) found across genomes, not much is known about how much these SVs vary within populations and between closely related species, nor their significance in evolution. To address these questions, we characterized the evolution of indel SVs using genome assemblies of three closely related Heliconius butterfly species. Over the relatively short evolutionary timescales investigated, up to 18.0% of the genome was composed of indels between two haplotypes of an individual Heliconius charithonia butterfly and up to 62.7% included lineage-specific SVs between the genomes of the most distant species (11 Mya). Lineage-specific sequences were mostly characterized as transposable elements (TEs) inserted at random throughout the genome and their overall distribution was similarly affected by linked selection as single nucleotide substitutions. Using chromatin accessibility profiles (i.e., ATAC-seq) of head tissue in caterpillars to identify sequences with potential cis -regulatory function, we found that out of the 31,066 identified differences in chromatin accessibility between species, 30.4% were within lineage-specific SVs and 9.4% were characterized as TE insertions. These TE insertions were localized closer to gene transcription start sites than expected at random and were enriched for sites with significant resemblance to several transcription factor binding sites with known function in neuron development in Drosophila . We also identified 24 TE insertions with head-specific chromatin accessibility. Our results show high rates of structural genome evolution that were previously overlooked in comparative genomic studies and suggest a high potential for structural variation to serve as raw material for adaptive evolution.more » « less
- 
            Butterfly color patterns provide visible and biodiverse phenotypic readouts of the patterning processes. While the secreted ligand WntA was shown to instruct the color pattern formation in butterflies, its mode of reception remains elusive. Butterfly genomes encode four homologues of the Frizzled-family of Wnt receptors. Here we show that CRISPR mosaic knock-outs of frizzled2 (fz2) phenocopy the color pattern effects of WntA loss-of-function in multiple nymphalids. While WntA mosaic clones result in intermediate patterns of reduced size, fz2 clones are cell-autonomous, consistent with a morphogen function. Shifts in expression of WntA and fz2 in WntA crispant pupae show that they are under positive and negative feedback, respectively. Fz1 is required for Wnt-independent planar cell polarity (PCP) in the wing epithelium. Fz3 and Fz4 show phenotypes consistent with Wnt competitive-antagonist functions in vein formation (Fz3 and Fz4), wing margin specification (Fz3), and color patterning in the Discalis and Marginal Band Systems (Fz4). Overall, these data show that the WntA/Frizzled2 morphogen-receptor pair forms a signaling axis that instructs butterfly color patterning, and shed light on the functional diversity of insect Frizzled receptors.more » « less
- 
            Despite insertions and deletions being the most common structural variants (SVs) found across genomes, not much is known about how much these SVs vary within populations and between closely related species, nor their significance in evolution. To address these questions, we characterized the evolution of indel SVs using genome assemblies of three closely related Heliconius butterfly species. Over the relatively short evolutionary timescales investigated, up to 18.0% of the genome was composed of indels between two haplotypes of an individual H. charithonia butterfly and up to 62.7% included lineage-specific SVs between the genomes of the most distant species (11 Mya). Lineage-specific sequences were mostly characterized as transposable elements (TEs) inserted at random throughout the genome and their overall distribution was similarly affected by linked selection as single nucleotide substitutions. Using chromatin accessibility profiles (i.e., ATAC-seq) of head tissue in caterpillars to identify sequences with potential cis-regulatory function, we found that out of the 31,066 identified differences in chromatin accessibility between species, 30.4% were within lineage-specific SVs and 9.4% were characterized as TE insertions. These TE insertions were localized closer to gene transcription start sites than expected at random and were enriched for several transcription factor binding site candidates with known function in neuron development in Drosophila. We also identified 24 TE insertions with head-specific chromatin accessibility. Our results show high rates of structural genome evolution that were previously overlooked in comparative genomic studies and suggest a high potential for structural variation to serve as raw material for adaptive evolution.more » « less
- 
            null (Ed.)Heliconius butterflies have bright patterns on their wings that tell potential predators that they are toxic. As a result, predators learn to avoid eating them. Over time, unrelated species of butterflies have evolved similar patterns to avoid predation through a process known as Müllerian mimicry. Worldwide, there are over 180,000 species of butterflies and moths, most of which have different wing patterns. How do genes create this pattern diversity? And do butterflies use similar genes to create similar wing patterns? One of the genes involved in creating wing patterns is called cortex . This gene has a large region of DNA around it that does not code for proteins, but instead, controls whether cortex is on or off in different parts of the wing. Changes in this non-coding region can act like switches, turning regions of the wing into different colours and creating complex patterns, but it is unclear how these switches have evolved. Butterfly wings get their colour from tiny structures called scales, which each have their own unique set of pigments. In Heliconius butterflies, there are three types of scales: yellow/white scales, black scales, and red/orange/brown scales. Livraghi et al. used a DNA editing technique called CRISPR to find out whether the cortex gene affects scale type. First, Livraghi et al. confirmed that deleting cortex turned black and red scales yellow. Next, they used the same technique to manipulate the non-coding DNA around the cortex gene to see the effect on the wing pattern. This manipulation turned a black-winged butterfly into a butterfly with a yellow wing band, a pattern that occurs naturally in Heliconius butterflies. The next step was to find the mutation responsible for the appearance of yellow wing bands in nature. It turns out that a bit of extra genetic code, derived from so-called ‘jumping genes’, had inserted itself into the non-coding DNA around the cortex gene, ‘flipping’ the switch and leading to the appearance of the yellow scales. Genetic information contains the instructions to generate shape and form in most organisms. These instructions evolve over millions of years, creating everything from bacteria to blue whales. Butterfly wings are visual evidence of evolution, but the way their genes create new patterns isn't specific to butterflies. Understanding wing patterns can help researchers to learn how genetic switches control diversity across other species too.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
